Fostering interpretability of data mining models through data perturbation
نویسندگان
چکیده
منابع مشابه
the clustering and classification data mining techniques in insurance fraud detection:the case of iranian car insurance
با توجه به گسترش روز افزون تقلب در حوزه بیمه به خصوص در بخش بیمه اتومبیل و تبعات منفی آن برای شرکت های بیمه، به کارگیری روش های مناسب و کارآمد به منظور شناسایی و کشف تقلب در این حوزه امری ضروری است. درک الگوی موجود در داده های مربوط به مطالبات گزارش شده گذشته می تواند در کشف واقعی یا غیرواقعی بودن ادعای خسارت، مفید باشد. یکی از متداول ترین و پرکاربردترین راه های کشف الگوی داده ها استفاده از ر...
data mining rules and classification methods in insurance: the case of collision insurance
assigning premium to the insurance contract in iran mostly has based on some old rules have been authorized by government, in such a situation predicting premium by analyzing database and it’s characteristics will be definitely such a big mistake. therefore the most beneficial information one can gathered from these data is the amount of loss happens during one contract to predicting insurance ...
15 صفحه اولThe Impact of Data Perturbation Techniques on Data Mining
Data perturbation is a data security technique that adds 'noise' to databases to allow individual record confidentiality. This technique allows users to ascertain key summary information about the data while preventing a security breach. Four bias types have been proposed which assess the effectiveness of such a technique. However, these biases deal with simple aggregate concepts (averages, etc...
متن کاملFostering Serendipity through Big Linked Data
The amount of bio-medical data available over the Web grows exponentially with time. The large volume of the currently available data makes it difficult to explore, while the velocity at which this data changes and the variety of formats in which bio-medical is published makes it difficult to access them in an integrated form. Moreover, the lack of an integrated vocabulary makes querying this d...
متن کاملDifferentially Private Linear Models for Gossip Learning through Data Perturbation
Privacy is a key concern in many distributed systems that are rich in personal data such as networks of smart meters or smartphones. Decentralizing the processing of personal data in such systems is a promising first step towards achieving privacy through avoiding the collection of data altogether. However, decentralization in itself is not enough: Additional guarantees such as differential pri...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Expert Systems with Applications
سال: 2019
ISSN: 0957-4174
DOI: 10.1016/j.eswa.2019.07.001